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This paper reports the results of three data sets of an experiment using the current balance to
measure the permeability of free space (µ0). We apply Ampere’s Law to derive the formula F =
µ0LI

2

2πd
for the magnetic force between two wires carrying equal currents in opposing directions.

Then, we fix d and L, and measure the current required to balance the weight of small, known
masses. As we vary the masses, we obtain a linear relationship between F and I2. Using the slope
of the graph plotting these two quantities, we compute an estimate for the constant µ0/2π.

I. INTRODUCTION

Parallel current-carrying wires exert magnetic forces
on each other. This is because the magnetic field pro-
duced by one of the currents interacts with the other
current and vice versa. By applying our two right-hand
rules to determine the direction of the magnetic field gen-
erated and the direction of the magnetic force, we notice
that the wires attract one another if the currents run in
the same direction, and repel each other if the currents
run in opposite directions, as show in Figure 1.

FIG. 1. This is a schematic representation of two parallel
current-carrying wires, the magnetic fields generated, and the
magnetic forces experienced by the wires as result.

Now, to determine the magnitude of the magnetic field
generated by a current, we apply Ampere’s Law under
the assumption that the length of the wire, L, is signifi-
cantly larger than the distance between the two wires, d
(L >> d), so that we can treat the wire as an infinitely
long line of charge. Ampere’s Law in the case of a static
electric field, in integral form, can be written as:
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∮
~B · d~s = µ0I, (1)

stating that the line integral of the magnetic field over a
closed loop is equal to the current enclosed multiplied by
the permeability of free space, the fundamental physical
constant of our interest. Fortunately for us, the geometry
of the system makes the line integral easily computable.
As shown in Figure 1, the magnetic field produced by a
straight wire forms concentric rings, so if we are inter-
ested in the magnetic field strength a distance d away
from the wire, we are looking at a circular loop of radius
d. Furthermore, we notice that an infinitesimal line ele-

ment d~s is always parallel to the magnetic field ~B at any
point along the loop and that the magnetic field strength
must be constant along the loop by symmetry. The re-
sult is that the left-hand side of our Equation 1 simply
turns into a product of the magnetic field strength and
the circumference of our loop, giving us:

B × 2πd = µ0I

=⇒ B =
µ0I

2πd
.

(2)

Then, since this is the magnetic field strength at the
location of the other current, we can calculate the mag-
netic force experienced by the other current by our basic
magnetic force equation:

~F = ~IL× ~B. (3)

Since we have already determined the direction of the
force via the right-hand rule, and we see that the mag-
netic field is perpendicular to the current, we may simply
write the magnitude of the magnetic force as:

F = ILB

=⇒ F = IL

(
µ0I

2πd

)
=⇒ F =

µ0LI
2

2πd
.

(4)
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This final equation is central to our experiment, as we
will be balancing this repelling magnetic force between
two forces with the weight of small masses. For one set
of measurements, we fix d and L, and measure the cur-
rent required to balance the weight as we vary the small
masses.

II. PROCEDURE

The current balance is an experimental device that al-
lows us to send currents through two parallel wires. The
bottom wire is fixed and the top wire, which sits directly
above the bottom wire, is movable with a small tray for
masses to be placed. The two wires are checked to be par-
allel and completely horizontal by using a level. Equal
currents are sent through the two wires in opposing di-
rections by connecting them in series with a DC power
supply capable of high currents up to 12A. We also con-
nect an ammeter in series to monitor the current through
the circuit. Now, in order to measure the small gap be-
tween the two wires, we employ the setup represented in
Figure 2. A ruler and a telescope are clamped a long dis-
tance b away from the current balance, aligned with the
mirror attached to the current balance such that ruler
readings can be obtained as the telescope is pointed to
the mirror. Then, as the wires swing apart by a dis-
tance d0 corresponding to a small angle θ, the mirror
also swings by the same angle θ. By the law of reflection,
as the vector normal to the mirror changes its direction
by θ meanwhile the outgoing light ray resolved by the
telescope remains in the same direction, the ingoing ray
must now have changed by an angle 2θ. If we let the
difference between the ruler readings when the bars are
touching and the when the bars are a distance d0 apart
as y and the distance between the bars and the pivot as
a as in Figure 2, we can use the geometry of this setup
to obtain a relationship between y and d0 such that we
can measure d0 more precisely.

Using trigonometry and the small-angle approxima-
tion, we see that:

2θ ≈ y

b

θ ≈ d0
a

=⇒ 2

(
d0
a

)
≈ y

b

=⇒ d0 ≈
ay

2b
.

(5)

Finally, since this allows us to calculate d0, we measure
the diameters of the wires, Du and Dd, using a microme-
ter and add the radius of each wire to obtain the distance
between the centers of the wires. In other words,

d = d0 + ru + rd, (6)

where ru and rd are the radii of the two wires. For a
set of measurements, we fix d0, and small masses rang-

FIG. 2. This is a schematic representation of our experimental
set-up. In effect, the use of the mirror and telescope allows us
to amplify the small distance d0 onto a larger ruler reading
y in order to make more precise measurements of the gap
between the two wires.

ing from 10mg to 160mg, precisely measured using the
microbalance, are put on the tray atop the movable wire.
For each mass, the current in the circuit is turned up
until the same gap width d0 is obtained.

In order to deal with stray magnetic fields that may
skew our results, we run the current in both directions
and take the geometric mean of the two currents. Let
us show that this is the proper way to take stray fields
into account. Let the current in one direction be I+ and
the other I−, and the stray magnetic field strength be
ε along the direction of the magnetic field on the upper
wire when the current is flowing in the I+ direction. So,
in the first direction of the current the total magnetic
field strength at the top wire is given by:

B+ =
µ0I+
2πd

+ ε.

In the other direction, stray fields will have the opposite
effect on the magnetic field strength, so we introduce a
negative sign:

B− =
µ0I−
2πd

− ε.

Now, we can calculate the magnetic force in each case:

F = I+L

(
µ0I+
2πd

+ ε

)
(7)

F = I−L

(
µ0I−
2πd

− ε
)

(8)

However, these magnetic forces are equal since they are
being balanced against the same weight mg. Rearranging
Equation 7, we obtain:

ε =
F

I+L
− µ0I+

2πd
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Then, substituting this expression into Equation 8, we
get:

F = I−L

(
µ0I−
2πd

−
(

F

I+L
− µ0I+

2πd

))
= I−L

(
µ0I−
2πd

− F

I+L
+
µ0I+
2πd

)
=
µ0LI−

2πd
(I− + I+)− FI−

I+
.

More rearranging,

F (I− + I+)

I+
=
µ0LI−

2πd
(I− + I+)

F =
µ0LI+I−

2πd
.

(9)

Therefore, we shall replace I2 in Equation 4 by the prod-
uct of the two currents I+ and I− to remove the effects
of stray fields.

III. RESULTS

III.1. Initial Measurements

Our measurements of fixed quantities in our experi-
ment are as follows:
The length of the wires: L = (0.2760± 0.0005)m
The distance between the wires and the pivot:
a = (0.2110± 0.0005)m
The distance between the pivot and the telescope:
b = (1.2095± 0.0005)m
The diameter of the top bar: Du = (0.0032100 ±
0.0000005)m
The diameter of the bottom bar: Dd = (0.0032600 ±
0.0000005)m

III.2. Data Set 1

For our first data set, the initial ruler reading when
the bars were touching was (0.0570 ± 0.0005)m and the
ruler reading when the bars were apart was (0.0650 ±
0.0005)m. From this, we can take the difference to yield
y = (0.008±0.001)m. Now, using this measurement with
our initial measurements, we can calculate d0 and d by
applying Equation 5 and 6.

d0 =
ay

2b

=
0.2110m× 0.008m

2× 1.2095m

= (7.0± 0.9)× 10−4m.

d = d0 + ru + rd

= 7.0× 10−4m+
0.0032100

2
m+

0.0032600

2
m

= (3.93± 0.09)× 10−3m.

The raw data for the first data set is shown below.

Mass (mg) Forward Current, I+ (A) Reverse Current, I− (A)

10.0 3.80 2.39

20.0 4.70 3.69

30.4 5.37 4.46

40.0 5.97 5.43

50.0 6.23 5.86

60.0 7.21 6.14

70.0 7.44 6.92

80.0 8.21 7.00

89.7 8.85 7.86

100.1 9.34 8.49

110.1 9.76 8.82

120.1 10.15 9.22

130.1 10.56 9.60

139.8 10.83 9.82

150.1 11.30 10.35

160.1 11.80 10.83

TABLE I. The first data set of forward and reverse currents
necessary to return the ruler reading to 0.0650m for varying
masses.

The uncertainty in the mass readings is 0.1mg and the
uncertainty in the current readings is 0.01A. According
to these data, we plot the force of gravity (and thus the
magnetic force) F = mg against I+I− and obtain the
following graph.

Using the fact that Equation 9 is in the form y = mx+c

if we take y = F , x = I+I−, m =
µ0L

2πd
, and c = 0, we can

read off the plot’s slope to calculate µ0/2π. By methods
of linear regression, the slope of the line of best-fit was
calculated to be:

m = (1.25± 0.02)× 10−5N/A2.

Rearranging our expression for the slope, we obtain:

µ0

2π
=
md

L

=
1.25× 10−5N/A2 × 3.93× 10−3m

0.2760m

= (1.78± 0.07)× 10−7N/A2.

Finally, comparing this to the actual value of µ0/2π =
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FIG. 3. This is a plot of the magnetic force (F ) against the square of the current with appropriate stray-field corrections
(I+I−). The residuals are also plotted near the horizontal axis.
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2× 10−7N/A2, we obtain our percentage error.

%e =
Xexp −Xthe

Xthe
× 100%

=
1.78× 10−7N/A2 − 2× 10−7N/A2

2× 10−7N/A2
× 100%

= 10.85%.

As an additional note, we qualitatively see no patterns
in the residuals, which means that the µ0/2π estimates
do not show a statistical change as we increase the masses
being placed.

III.3. Data Set 2

We apply the same analysis. For our second data set,
the initial ruler reading was (0.0590± 0.0005)m and the
ruler reading when the bars were apart was (0.0700 ±
0.0005)m. From this, we can take the difference to yield
y = (0.011±0.001)m. Now, using this measurement with
our initial measurements, we can calculate d0 and d.

d0 =
ay

2b

=
0.2110m× 0.011m

2× 1.2095m

= (9.6± 0.9)× 10−4m.

d = d0 + ru + rd

= 9.6× 10−4m+
0.0032100

2
m+

0.0032600

2
m

= (4.19± 0.09)× 10−3m.

The raw data for the second data set is shown below.
According to these data, we plot the force of gravity

(and thus the magnetic force) F = mg against I+I− and
obtain the following graph.

By linear regression, the slope of the line of best-fit
was calculated to be:

m = (1.21± 0.03)× 10−5N/A2.

Rearranging our expression for the slope, we obtain:

µ0

2π
=
md

L

=
1.21× 10−5N/A2 × 4.19× 10−3m

0.2760m

= (1.84± 0.09)× 10−7N/A2.

Finally, comparing this to the actual value of µ0/2π =
2× 10−7N/A2, we obtain our percentage error.

%e =
Xexp −Xthe

Xthe
× 100%

=
1.84× 10−7N/A2 − 2× 10−7N/A2

2× 10−7N/A2
× 100%

= 8.06%.

Mass (mg) Forward Current, I+ (A) Reverse Current, I− (A)

10.1 2.88 2.49

19.9 4.22 3.54

30.0 5.01 4.09

40.0 6.16 5.25

50.0 6.27 5.58

60.1 6.90 6.02

69.9 7.48 6.68

80.0 8.08 7.31

90.0 8.55 7.79

100.0 9.23 8.22

110.1 9.69 8.90

119.9 10.12 9.23

130.0 10.56 9.54

140.0 10.94 10.01

150.0 11.50 10.52

160.1 11.84 10.83

TABLE II. The second data set of forward and reverse cur-
rents necessary to return the ruler reading to 0.0700m for
varying masses.

Once again, we qualitatively see no patterns in the
residuals, which means that the µ0/2π estimates do not
show a statistical change as we increase the masses being
placed.

III.4. Data Set 3

We once again apply the same analysis. For our third
data set, the initial ruler reading was (0.0600±0.0005)m
and the ruler reading when the bars were apart was
(0.0815±0.0005)m. From this, we can take the difference
to yield y = (0.022± 0.001)m. Now, using this measure-
ment with our initial measurements, we can calculate d0
and d.

d0 =
ay

2b

=
0.2110m× 0.022m

2× 1.2095m

= (1.92± 0.09)× 10−3m.

d = d0 + ru + rd

= 1.92× 10−3m+
0.0032100

2
m+

0.0032600

2
m

= (5.15± 0.09)× 10−3m.

The raw data for the third data set is shown below.
According to these data, we plot the force of gravity

(and thus the magnetic force) F = mg against I+I− and
obtain the following graph.
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FIG. 4. This is a plot of the magnetic force (F ) against the square of the current with appropriate stray-field corrections
(I+I−). The residuals are also plotted near the horizontal axis.
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Mass (mg) Forward Current, I+ (A) Reverse Current, I− (A)

10.1 3.37 2.68

19.9 4.42 3.74

30.0 5.58 4.79

40.0 6.76 5.77

50.0 7.67 6.46

60.1 8.42 7.31

69.9 8.87 7.82

80.0 9.53 8.45

90.0 9.90 8.85

100.0 10.66 9.47

110.1 11.08 10.11

119.9 11.72 10.56

TABLE III. The third data set of forward and reverse currents
necessary to return the ruler reading to 0.0815m for varying
masses.

By linear regression, the slope of the line of best-fit
was calculated to be:

m = (9.4± 0.2)× 10−6N/A2.

Rearranging our expression for the slope, we obtain:

µ0

2π
=
md

L

=
9.4× 10−6N/A2 × 5.15× 10−3m

0.2760m

= (1.75± 0.08)× 10−7N/A2.

Finally, comparing this to the actual value of µ0/2π =
2× 10−7N/A2, we obtain our percentage error.

%e =
Xexp −Xthe

Xthe
× 100%

=
1.75× 10−7N/A2 − 2× 10−7N/A2

2× 10−7N/A2
× 100%

= 12.51%.

Again, we qualitatively see no patterns in the residuals,
which means that the µ0/2π estimates do not show a
statistical change as we increase the masses being placed.

IV. CONCLUSION AND FUTURE WORK

In this experiment, we were able to measure the per-
meability of free space, µ0, to a reasonably degree of ac-
curacy: 10.85%, 8.06%, and 12.51% error for the three
data sets. The results of µ0/2π estimates were 1.78 ×
10−7N/A2, 1.84 × 10−7N/A2, and 1.75 × 10−7N/A2 re-
spectively. We derived the formula for the magnetic force
between current-carrying wires using Ampere’s Law, and
applied the formula to devise a linear relationship be-
tween the magnetic force F and the squared currents I2.
To correct for the stray magnetic fields, we replaced I2

with I+I−, where I+ and I− are currents measured when
the circuit was ran in the opposite direction. As can be
seen from the three data sets’ plots of F against I+I−,
our results are reasonably precise. For instance, the un-
certainty in our estimate of µ0/2π obtained from our first
data set is only 0.07× 10−7N/A2. In all three data sets,
the true value of 2 × 10−7N/A2 is not included in our
uncertainty range, which implies the presence of system-
atic errors. We shall carefully evaluate the experimental
set-up and attempt to remove significant sources of sys-
tematic error in future iterations of this same experiment.
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FIG. 5. This is a plot of the magnetic force (F ) against the square of the current with appropriate stray-field corrections
(I+I−). The residuals are also plotted near the horizontal axis.


	Permeability of Free Space (0) and the Force between Two Current-Carrying Wires (Current Balance)
	Abstract
	Introduction
	Procedure
	Results
	Initial Measurements
	Data Set 1
	Data Set 2
	Data Set 3

	Conclusion and Future Work
	References


